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Abstract

The segmentation of individual leaves in plant images is still a challenging task, es-
pecially in case of leaf overlaps. The exact determination of individual leaf areas could
improve the biomass estimation which is a good indicator for plant performance. In ad-
dition, the number of leaves is directly related to plant development, leaf counts give
insight into changing plant development stages. Machine learning is a powerful tool for
solving vision tasks. Here we propose an approach including image analysis methods for
extraction of a comprehensive set of image features (based on the software IAP) to pre-
dict the number of leaves for rosette plants. In addition, we developed a method to detect
exact leaf borders for resolving inaccurate leaf segmentation in case of leaf overlaps. For
classifier training we evaluate a broad set of different colour and texture features. The
predicted leaf borders are used as input for further image processing methods to com-
plete the leaf segmentation. The approaches were tested on image data of Arabidopsis
thaliana and tobacco plants supplied in connection with the Leaf Counting Challenge
(LCC) and the Leaf Segmentation Challenge (LSC) of the Computer Vision Problems in
Plant Phenotyping (CVPPP) workshop in conjunction with the British Machine Vision
Conference (BMVC) in 2015. The results show the methods ability for improved leaf
count estimations and for predicting leaf overlap borders, which helps to improve the
segmentation of individual leaves.

1 Introduction

The results from the leaf segmentation challenge (LSC) in 2014 showed that there is still a
need for improvement of individual leaf segmentation. The leading approach [12] showed
inaccuracies in resolving leaf overlaps in the training and test data sets (data sets and ap-
proaches for data analysis are described in detail in [15] and [10]). Here, the exact determi-
nation of the leaf shapes and leaf positions, in case of an overlap to determine which leaf is
in front, is still a problem. In our previous work the problem was resolved by calculating
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straight split lines which do not take the real leaf shape into account. Even for techniques like
so called matching techniques or shape modelling approaches, it is hard to estimate the real
leaf position in case of leaf overlaps without additional information. Known approaches use
time-lapse image data, 3-D information as input or images are acquired under well-defined
conditions [1, 9, 18]. Additional information about the leaf borders would be essential to en-
hance the robustness in case of diverse imaging circumstances. Here, we try to resolve this
problem by an enhanced image pre-processing. The extraction of the leaf borders would give
an information about the real leaf shape, also in case of leaf overlaps. By utilizing a machine
learning approach different features could be included for learning leaf border features. For
general use cases machine-learning-based edge detection approaches have been developed
before, but these do not focus on leaf borders in leaf overlap regions (e.g. [2]). Another
problem we found in our previous work, is the low sensitivity for very small leaves, and we
therefore systematically under-estimated the number of leaves [12]. In this work we present
a machine-learning-based regression approach, which utilizes a larger number of phenotypic
features, in this case calculated with our IAP software [7], to improve the prediction of leaf
counts. The results of the leaf count predictions are further used to modify the sensitivity of
our leaf labelling methods. In this paper we focus on combining approaches for predicting
leaf counts, individual leaf labelling and the detection of leaf overlap lines, to improve the
labelling. Based on the extracted leaf borders common image processing algorithms will be
used to perform the leaf segmentation. The transformation of multiple image channels into
the text-based ARFF file format allows us to use the Weka [3] machine learning toolkit not
only for leaf count prediction, but also for the prediction of leaf border lines.

2 Methods

The overall image analysis approach contains three main steps: (1) The analysis of the gen-
eral plant phenotypic appearance, using our IAP analysis pipeline. The phenotypic result
data table is used to train a data-set-specific predictive regression model to better predict
leaf counts. (2) We analyse colour- and texture-specific plant features, to create a prediction
model for leaf borders in the regions of leaf overlaps. (3) The predicted leaf count num-
bers and the leaf border prediction is utilized to improve the reconstruction and labelling of
individual leaves.

2.1 Leaf-Count Regression Model

This step of the workflow is based on a machine learning approach utilizing Weka for ma-
chine learning tasks and TAP for calculating a set of geometric features, based on the plant
shape. At first, a feature evaluation and classifier training is performed by using several im-
age features. In a second step, the best classifier is used to predict the leaf count on unknown
testing data. The complete workflow is depicted in figure 3 on the right. For the extraction of
a set of geometric features we used the IAP software. Most of the features are described in
the reference paper for this software system [7], an overview is given in table 1. In addition,
we added a feature which was developed and used for the direct prediction leaf counts in our
LSC analysis pipeline of the previous year [12]. This leaf count feature, which is based on
the Euclidian distance map maxima peak search, gives a good approximation for the number
of leaves, especially for rosette plants, such as Arabidopsis thaliana. Also, a image mo-
ment calculation was added, which gives information about the orientation and shape of the
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plant (eccentricity). The features are calculated by using the ground truth foreground images
included within the given data sets which were provided for the LCC 2015.

Table 1: List of extracted geometric image features using our IAP software, as basis for

improved leaf count predictions.

Rank  Feature Description

1 leaf count (distance map peaks) Edm based peak number

2 border length foreground border length

3 hull circularity convex hull circularity

4 min rectangle (length small side) size of smallest bounding rectangle

5 skeleton branch count number of skeleton branch points

6 skeleton length length of skeleton

7 convex hull farthest distance (PC1) maximum distance within convex hull
8 circumcircle diameter foreground circumcircle diameter

9 compactness foreground compactness

10 skeleton endpoints number of skeleton endpoints

12 2nd moment minor 2nd main axis

13 hull PC2 max. dist. in opposite direction of PC1
14 2nd moment major first main axis

15 area / skeleton length ratio between area and skeleton length
16 min rectangle area area of minimum bounding rectangle
17 area foreground area

18 hull area

19 hull points

20 hull fill grade

21 skeleton length/skeleton tips

area of convex hull

number of convex hull extreme points
covered pixels by foreground

ratio of skeleton length and # of endpoints

2.1.1 Feature Evaluation

To gain a deeper understanding on the importance of selected features in relation to the leaf
counts, we performed a feature evaluation using the Weka [3] feature selection mode. We
used the ReliefF-Attribute-Evaluation method (weka.attributeSelection.ReliefFAttributeEval)
[6, 8, 14] and the Attribute-Selection-Ranker Search method, to access the average merit of
the calculated features. The ReliefF algorithm evaluates the worth of attributes by repeatedly
sampling an instance and then by accessing the distance to the nearest instance of the same
class in comparison to a different class. An advantage of this method is that it can work on
discrete as well as on continuous data. In this case we aimed for the prediction of continuous
data, as our prediction goal should be an estimation of leaf-counts. A classification approach
with a given set of categorical target values would require more training data for all possible
leaf counts and was therefore regarded as not suitable. For parameterization, we used the
default settings in Weka v3.6.12, all instances were sampled and evaluated, and 10 nearest
neighbours were used to estimate the attribute relevance. The Attribute-Selection-Ranker
ranks the attributes by their individual evaluations. The average rank was then used to order
the features as shown in table 2. The overall rank table column was calculated by adding-
up the average merit values for A1, A2 and A3, and by ordering the features accordingly.
Overall, our previous approach of counting leaves by accessing the peaks of the foreground-
distance-map, was found to be most valuable in our testing to predict the real leaf counts.
After that the plant outline length, hull circularity and geometric bounds such as the size
of the minimum enclosing rectangle, as well as the number of skeleton branch counts were
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found to be useful features. For the different data sets, the spread of the average merit val-
ues was quite small, and the ordering of the different features showed no clear pattern, when
comparing the results for A1, A2, and A3. As the importance of the features didn’t suggested
a clear cut-off threshold for the A1 data set, we continued to use all calculated features in the
leaf count prediction step (see section 2.1.2 and figure 2 for details).

Table 2: Feature evaluation, ranks of the top five features for A1, A2, A3 and overall

Rank Al A2 A3 Overall

1 hull fill grade skeleton branch cnt  dist.map peaks dist.map peaks

2 2nd moment minor dist.map peaks hull circularity border length

3 leaf tip corner angle ~ compactness border length hull circularity

4 2nd moment major skeleton length hull PC1 min rectangle (b)

5 leaf tip width skewn.  2nd moment major  min rectangle (b)  skeleton branch cnt

2.1.2 Classifier Evaluation

To compare the general classifier performance, we compared all regression approaches (see
figure 1), available by default in Weka (no additional packages were installed) using the
experimenter interface. After loading the training data result tables (generated using IAP
version 2.0.2), we used the colour-count data column as the target-column for the regression
approach. The colour-count in the ground-truth label images corresponds to the ground-truth
leaf count values minus one (background colour should be ignored).

For this leaf segmentation challenge situation, we selected for each data set the classi-
fiers which showed the lowest error. For Al the IBk algorithm was selected, for A2 the
DecisionTable, and for A3 the RandomSubSpace (using the REPTree) algorithm. From the
available and tested approaches Meta-Classifier RandomSubSpace [4], which uses the REP-
Tree algorithm by default, showed the overall lowest classification errors. We did not con-
sider the M5Rules [5, 13, 17] algorithm as it showed fluctuating performance for different
testing situations and data bases.

The evaluations in Weka are based on floating point regression results, so in practice the
prediction results will be slightly less accurate, as the leaf counts would need to be rounded.

To further find out, how influential the number of phenotypic features is to the prediction
accuracy, we compared the performance of the approaches, when using the single best fea-
ture (from table 2), when using the top five features (as listed in the table), and when using
all phenotypic features as extracted using IAP (see table | for details). Figure 2 illustrates
the results. In all cases the classifier performance increased by incorporating the top five
features, when compared to using a single predictive variable. For dataset Al incorporating
more than five features still significantly improved the error rate (mean absolute error), for
A2 and A3 no further improvement could be achieved in these cases.

These comparisons are based in each case on a 10-fold cross of the training data and a 10
times repeated testing. More repetitions could be done and further statistical evaluations of
the significance of the differences would be possible, but were not pursued within this work.

2.2 Individual Leaf Segmentation

The pipeline to detect individual leaves consists of two main parts, as depicted in figure 3.
In the first part of our pipeline we utilize machine learning techniques for edge extraction to
resolve the exact contours or borders of leaves in case of touching leaves or leaf overlaps. In
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I

Figure 1: Comparison of prediction results for leaf counts of the Al, A2 and A3 data sets.
Calculated are the differences (mean absolute error) of ground truth leaf counts to the pre-
diction results. Table 4 shows the values in detail.
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Mean absolute error

meta.RandomSubSpace (A3) -
lazy.IBK (A1) -

meta.Bagging -
meta.RegressionByDiscretization -
rules.DecisionTable (A2) -
lazy.LWL -

trees.REPTree -
trees.DecisionStump -
meta.AdditiveRegression -
functions.RBFNetwork -
functions.MultilayerPerceptron -
functions.GaussianProcesses ~
rules.ConjunctiveRule -
rules.ZeroR -

meta.Vote -

meta.Stacking -
meta.CVParameterSelection -
functions.LinearRegression -

the second part we use several image processing steps to reconstruct the detailed leaf shapes,
supported by the predicted leaf borders. The predicted leaf counts from the previous section
are also used in the leaf segmentation and region merging processes.

2.2.1 Leaf Border Detection

The exact leaf borders which will be used for the classifier training are extracted from the
given ground truth image data (pre-labeled leaf image, see middle part of figure 4). The
leaf borders are extracted by performing an edge detection (sobel filter) on the pre-labeled
ground truth images. The result are fine lines, representing the leaf edges in the area of leaf-
overlap. This result is dilated by a few pixels, as the edge region is somewhat blurry in the
input images. By applying the ground truth foreground information two images per plant
are generated. One image contains the borders of touching leaves. The second image con-
tains the inner leaf area pixels. These images are used for classifier training. For an optimal
training result different features are extracted. The given RGB images are converted into
several colour-spaces (CMYK, HCY, HSI, HSL, I1T2T3, Lab, LCHLab, LCHLuv, LSH-
Lab, LSHLuv, Luv, YCbCr, YIQ, YQ1Q2, Yuv, YUV, Yxy), since it is known that the RGB
colour-space is often not optimal suited for segmentation tasks. By using the different Weka
feature evaluation modes, we determined, that the Luv and Lab colour spaces were in most
cases best suited to separate the border pixels from the inner leaf pixels. As the ranking
of the channels was not fully consistent and often highly correlated channels were grouped
together in the ranking (e.g. several colour channels encode the brightness, only slightly dif-
ferent), we choose the best colour-related channels (Lab.a and Luv.v), which encode opposite
colour information (Lab.a red-green and Luv.v blue-yellow), as the basis for the generation
of additional channels. Therefore, based on these two channels a further feature extraction is
performed utilizing different image- and texture-filters. A Gaussian blur, median and sharpen
filter are applied by using ImageJ [16] functions. The texture features are calculated based
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Figure 2: Comparison of prediction results for leaf counts of the Al, A2 and A3 data sets,
when using the most important feature (see table 1), the best five, and all features for leaf-
count prediction (10-fold cross-validation, shown are mean absolute errors, error bars show
standard error based on 10 repetitions).

on the GLCM approach [11]. The median filter uses a mask size of 4 pixels in x and y di-
rection, for the Gaussian blur, sharpen and GLCM texture calculations a 3x3 mask size was
chosen. A random forest RF classifier is trained by utilizing the WEKA framework (version
3.6.12). The depth of the trees is set to unlimited and 100 trees have been calculated, random
seed value is 1’ (the command line parameters are ’-K 0 -1 100 -S 1°, default values were
used). In a next step, the trained model is used to predict the leaf borders on the testing data.
Weka automatically chooses the most likely class, in case of a binary decision (leaf border
or inner leaf pixels), the threshold is 0.5. The actual class probability can also be included
in the output and transformed into gray-scale images, as shown for illustration in image 3 of
figure 4.

2.2.2 Leaf Area Labelling

The leaf border prediction image which is calculated by the first pipeline part and the re-
sults from the leaf count estimation are used as input for the individual leaf segmentation.
An overview of the used methods can be found in figure 3 (gray box at the bottom). For
estimating the positions of the leaf center points a Euclidean distance map is calculated on
the predicted leaf edge image. The machine learning model, trained by Weka (for all meth-
ods we used the default parameters as provided by Weka version 3.6.12) is used to segment
the test data into ’inner leaf areas’ and ’leaf border’ pixels. In case of touching or overlap-
ping leaves the peaks in the distance map will be at least partially separated by the detected
leaf borders. The peak detection gives the positions of the leaf centres. The distance map
includes still noise and artefacts. To optimize the peak search, the sensitivity for the peak de-
tection is adjusted using the leaf count results obtained in the leaf count prediction process.
The sensitivity is decreased iteratively as long as the detected number of peaks stays larger
or is equal to the estimated leaf count. The detected peaks, which approximate the position
of the leaf centres, are then used as starting points for a flood-filling like approach. Before
the labelling starts, segments are separated by split-lines, which are calculated as detailed in
[12]. The flood-filling labelling-approach therefore stops at the split-lines, the shortest line
which splits any two regions. The flood filling at this stage just processes the predicted leaf
inner areas and will not process the detected leaf borders (see image 4, 5, and 6 in figure
4). In addition, small foreground areas which contain no detected distance-map peaks will
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Figure 3: Suggested workflow for leaf count prediction and leaf segmentation. The first part
depicts the training phases for the leaf border detection and for the leaf count regression,
both utilizing machine learning techniques. The information for the predicted leaf borders
and leaf count is used to perform an individual leaf segmentation. Rectangles represent
processing steps, the other shapes represent data files.
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Figure 4: Results for the prediction result for the leaf edge detection and leaf labeling (ex-
ample image from data set Al, plant 007). (1) input image, (2) ground truth label image,
(3) prediction result (black indicates high probability for leaf borders), (4) detected leaf cen-
tres, (5) result of performed region filling, (6) labeled missing pixels by nearest neighbour
approach and region merging.

initially not be labeled. To complete the labelling of the whole plant (in this case given from
the provided foreground masks), unlabeled pixels will be assigned according to the nearest
labeled foreground pixel. The nearest labeled pixel is determined according to a shortest
path search, which ignores background pixels. Finally, in case more regions are found and
labeled than predicted, in each iteration step two adjacent regions are merged using a greedy
step-wise approach to maximize the compactness of the merged areas. The merging process
will stop if the number of regions equals the estimated leaf count.

3 Results and Discussion
Table 3 shows the error rates of our approach for predicting the leaf counts of the given
training data sets. Calculation based on the classifiers which give the best performance (see

table 4).

Table 3: Error rates for the leaf count prediction for the training set.

Al A2 A3
Correlation coefficient 0.84 0.79 0.79
Mean absolute error 0.69 1.69 0.79
Root mean squared error 0.96 1.95 0.93
Relative absolute error 47.66 5790 5247
Root relative squared error | 55.95 56.88 56.20
Total Number of Instances 128 31 27

Overall, the quality of the leaf count estimation has been significantly improved com-
pared to the LSC 2014 results. The geometric features give a good basis and could eventually
be further improved by other features such as colour and texture related or additional geo-
metric features. Here, it would probably be sensible, to extend the list of features by adding
the results of other phenotypic image analysis tools. We expect that our approach will work
for other species too, but the actual trained models will most likely not be applicable for
diverse phenotypes. For different phenotypes, the influential phenotypic properties will also
most likely vary. Comprehensive training data will therefore be required for creating leaf-
count prediction models for plants with different phenotypic appearance. Such training data
would also be useful to make it possible to work on generalization of the presented methods.

The processing pipeline for leaf border detection and leaf labelling is designed by uti-
lizing Bash scripts and different command line based image processing commands, utilizing
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Table 4: Comparison of classifier performance (shown are algorithms, ordered by the average
mean absolute error for Al, A2, A3, default algorithm parameters in Weka were unchanged
from default. These values are diagrammed in figure 1.

Algorithm Al A2 A3  Average Mean Absolute Error
meta.RandomSubSpace 0.86 1.87 0.79 1.17
lazy.IBk 069 2.13 0.81 1.21
meta.Bagging 0.84 197 0.83 1.21
meta.RegressionByDiscretization  1.00 1.97  0.85 1.27
rules.DecisionTable 1.00 1.69 1.27 1.32
lazy LWL 098 225 1.06 1.43
trees.REPTree 098 229 1.07 1.45
trees.DecisionStump 1.01 239 1.07 1.49
meta.AdditiveRegression 099 273 0.88 1.53
functions.RBFNetwork 1.08 242 127 1.59
functions.MultilayerPerceptron 121 258 1.06 1.62
functions.GaussianProcesses 0.82 270 1.36 1.63
rules.ConjunctiveRule 1.04 271 1.23 1.66
rules.ZeroR 149 352 1.73 2.25
meta.Vote 149 352 1.73 2.25
meta.Stacking 149 352 1.73 2.25
meta.CVParameterSelection 149 352 1.73 2.25
functions.LinearRegression 1.01  2.60 842 4.01

our MCCCS ! framework. This system also connects machine learning techniques with im-
age analysis approaches, by converting images to ARFF files, which can be processed by
Weka, and by converting result ARFF files into grayscale or RGB images. Image processing
utilizes IAP [7] and ImageJ [16] as libraries for this system.

The analysis of the given data sets was performed in two steps in respect to the pipeline
design. First a classifier training for the leaf border detection was performed. Here, randomly
500 pixels were selected and used per class (two classes, class 1 *border pixel’, class 2 ’inner
leaf area pixel’) and training image. After completion of the leaf border detection, the second
part, the individual leaf segmentation was performed. Table 5 shows the average computation
times for each training data set. The calculation time is mostly influenced by the calculation
of the GLCM texture features, and the blur- and median-filter calculations. Dataset A3 is of
higher resolution (2448 by 2048 px) in comparison to Al and A2 (500 by 530 and 530 by 565
px), also explaining the longer computation times for the A3 data set. The calculations for
the prediction phase take nearly the same time per image, as in this phase the same number
of colour- and texture channels needs to be computed and applying the prediction model and
performing the labelling is completed in a few seconds. Figure 5 shows an example result

Table 5: Processing time per image for the training data in minutes. Numbers in the heading
represent the number of images for each data set.
| A1(128) | A2(33) | A3(27)
per plant ~28 ~33 ~120
classifier training H ~90 ‘ ~6 ‘ ~15

compared to the LSC 2014 pipeline [12]. The new approach is an improvement compared

1 mcccs.sourceforge.net (unpublished)
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to the old approach, as seen in the region of leaf overlaps (top right part of plant). In the
illustrated example all leaf overlaps could be resolved. Unfortunately the merging approach
is not optimal in case of failed detection of leaf centres. Especially the leaf detection in the
centre of the plant is a challenging problem. This leads to remaining artefacts, split leaves
will not be merged, if the estimated leaf number is already reached (as can be seen at the
small leaf at the right-bottom position in figure 5, right image). Here, meaningful peaks
in the plants centre are missing. Detection of wrong regions caused by noise (leaf-veins),

‘ % %

Figure 5: Example results (data set Al, plant 007), left - given ground truth label image,
middle - LSC 2014 result, right - LSC 2015 result.

especially in the A3 data set. Here, a better pre-processing could remove noise and resolve
the wrongly detected parts.

Table 6 shows the segmentation results for the given training and the independently eval-
uated testing data sets. Compared to the results of the LSC 2014 challenge [12] our new
approach shows a better performance on all training data sets. The testing results showed a
more diverse result. The slightly decreased performance in case of the A3 data set could be
explained by the different resolution and noise appearance, compared to the Al and A2 data
sets which are quite similar in case of image quality and resolution.

Table 6: Results for the training (first) and testing data sets (second row set).
| [[ BestDice [%] | FGBGDice [%] | AbsDiffFGLabels | DiffFGLabels |

Al 82.4 (£5.0) 100.0 (£0.0) 0.1 (£0.3) 0.1 (£0.4)
A2 83.5 (£9.7) 100.0 (£0.0) 0.3 (£0.7) -0.2 (£0.7)
A3 |[ 71.6 (£21.8) 96.3 (£19.2) 0.6 (£1.3) 0.2 (£1.4)
all 81.0 (£10.7) 99.5 (£7.3) 0.2 (£0.6) 0.0 (£0.7)
Al || 809 (£6.3) 100.0 (£0.0) 0.8 (£1.0) 02 (£1.2)
A2 78.6 (£7.7) 100.0 (£0.0) 1.7 (£1.5) -0.6 (£2.2)
A3 64.5 (£16.1) 100.0 (£0.0) 1.2 (£1.2) -0.3 (£1.7)
all || 71.3 (£15.1) 100.0 (£0.0) [1(£1.2) 0.3 (£1.6)
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